منابع مشابه
M-IDEAL STRUCTURE IN UNIFORM ALGEBRAS
It is proved that if A is aregular uniform algebra on a compact Hausdorff space X in which every closed ideal is an M-ideal, then A = C(X).
متن کاملUniform Algebras on Curves
The proofs use the notion of analytic structure in a maximal ideal space. J. Wermer first obtained results along these lines and further contributions were made by E. Bishop and H. Royden and then by G. Stolzenberg [5] who proved STOLZENBERG'S THEOREM. Let XQC be a polynomially convex set. Let KQC be a finite union of Q-curves. Then (XKJK)*—X\JK is a {possibly empty) pure 1-dimensional analytic...
متن کاملSurjective Real-Linear Uniform Isometries Between Complex Function Algebras
In this paper, we first give a description of a surjective unit-preserving real-linear uniform isometry $ T : A longrightarrow B$, where $ A $ and $ B $ are complex function spaces on compact Hausdorff spaces $ X $ and $ Y $, respectively, whenever ${rm ER}left (A, Xright ) = {rm Ch}left (A, Xright )$ and ${rm ER}left (B, Yright ) = {rm Ch}left (B, Yright )$. Next, we give a description of $ T...
متن کاملHankel-Type Operators, Bourgain Algebras, and Uniform Algebras
Let H∞(D) denote the algebra of bounded analytic functions on the open unit disc in the complex plane. For a function g ∈ L∞(D), the Hankel-type operator Sg is defined by Sg(f) = gf +H∞(D). We give here an overview of the study of the symbol of the Hankel-type operator, with emphasis on those symbols for which the operator is compact, weakly compact, or completely continuous. We conclude with a...
متن کاملThe operator amenability of uniform algebras
We prove a quantized version of a theorem by M. V. Shĕınberg: A uniform algebra equipped with its canonical, i.e. minimal, operator space structure is operator amenable if and only if it is a commutative C∗-algebra.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1980
ISSN: 0022-1236
DOI: 10.1016/0022-1236(80)90081-6